Improved probabilistic prediction of healthcare performance indicators using bidirectional smoothing models
نویسندگان
چکیده
Smoothing of observed measures of healthcare provider performance is well known to lead to advantages in terms of predictive ability. However, with routinely collected longitudinal data there is the opportunity to smooth either between units, across time or both. Hierarchical generalized linear models with time as a covariate and hierarchical time series models each result in such two-way or ‘bidirectional’ smoothing. These models are increasingly being suggested in the literature, but their advantages relative to simpler alternatives have not been systematically investigated. With reference to two topical examples of performance data sets in the UK, we compare a range of models on the basis of their short-term predictive ability. Rather than focusing on point predictive accuracy alone, fully probabilistic comparisons are made, using proper scoring rules and tests for uniformity of predictive p-values. Hierarchical generalized linear models with time as a covariate were found to perform poorly for both data sets. In contrast, a hierarchical time series model with a latent AR(1) structure has attractive properties and was found to perform well. Of concern, however, is the large amount of time that is needed to fit this model using the WinBUGS software. We suggest that research into simpler and faster methods to fit models of a similar structure would be of much benefit.
منابع مشابه
Prediction of global sea cucumber capture production based on the exponential smoothing and ARIMA models
Sea cucumber catch has followed “boom-and-bust” patterns over the period of 60 years from 1950-2010, and sea cucumber fisheries have had important ecological, economic and societal roles. However, sea cucumber fisheries have not been explored systematically, especially in terms of catch change trends. Sea cucumbers are relatively sedentary species. An attempt was made to explore whether the tim...
متن کاملComparison of breast cancer burden in Iranian women with Eastern Mediterranean region and prediction by exponential smoothing method
Introduction: The aim of this study was to investigate the burden of breast cancer (DALY Index) trend in Iran and compare it with the Eastern Mediterranean region (EMR) and finally to predict the burden of this disease. Materials and Methods: Equalization of breast cancer burden trend in Iran and the EMR during the years 1990 to 2017 was tested using Cochrane Armitage method. The trend of chang...
متن کاملPrediction of global sea cucumber capture production based on the exponential smoothing and ARIMA models
Sea cucumber catch has followed “boom-and-bust” patterns over the period of 60 years from 1950-2010, and sea cucumber fisheries have had important ecological, economic and societal roles. However, sea cucumber fisheries have not been explored systematically, especially in terms of catch change trends. Sea cucumbers are relatively sedentary species. An attempt was made to explore whe...
متن کاملFunctional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کاملStatistical Link Label Modeling
One of the major issues in signed networks is to use network structure to predict the missing sign of an edge. In this paper, we introduce a novel probabilistic approach for the sign prediction problem. The main characteristic of the proposed models is their ability to adapt to the sparsity level of an input network. The sparsity of networks is one of the major reasons for the poor performance ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010